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1 Introduction

This week you will be learn about and implement the Digital Difference
Analyzer algorithm (DDA). First lets recall some basics about the equation
of a line. Given two points in a plane (x0, y0) and (x1, y1) the slope-intercept
form of a line can be defined as

y = m ∗ x + b

Where m is the slope of the line

m =
y1 − y0

x1 − x0

The y intercept b can be computed by isolating it, giving you

b = y0 −m ∗ x0

One approach to rasterizing the line is through direct scan conversion, whereby
each x-value in the interval [x0, x1] is plugged into the slope-intercept equa-
tion to get the corresponding y-value. Then we can plot the pixel (x, Round(y))
onto the display. Although this works we are performing one floating point
addition and multiplication to get each y-value. In turns out that there is a
more efficient way of accomplishing the same goal, which brings us to DDA
algorithm (Digital Difference Analyzer).
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2 DDA

DDA works by using the pixel coordinates computed last and the slope. From
the previous section you can easily compute how far to move over (δx) or
how far to move up (δy) on the screen to draw your next point on the line.

δy = m ∗ δx

δx =
δy

m

Given that you already know you want to move over (δx) or up (δy) a certain
number of units (for computers these units equate to pixels on the screen)
you then plug these values into one of the two equations along with the slope
and solve.

The DDA algorithm can be then broken down into the following cases.

1. A line with positive slope and 0 ≤ m ≤ 1 then you can take δx = 1
and compute successive y values using.

yk+1 = yk + m

Note: remember that because m is not necessarily an integer you must
round your result.

2. A line with positive slope and m > 1 then you calculate x instead of y
and take δy = 1 and compute succesive x values using

xk+1 = xk +
1

m

The same applies here you need to round!

Both of these calculations can generalize to lines with negative slope so you
can use case 1 when |m| ≤ 1 and case 2 when |m| > 1.

How is this algorithm faster than directly implementing the equation of the
line?
What is a drawback to this algorithm?
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